Comp 150 Final Exam Overview.

Resources During the Exam

The exam will be closed book, no calculators or computers. You may bring notes on four sides of 8.5x11 inch paper (either both sides of two sheets, or four sheets written on single sides). Write this as you study! I mostly want to test you on concepts, not memorized rote facts.

Main topics that may be on the final exam: Previous exam topics + AE pp 69-84, 95-100, 168-170, 243-256, 263-271, chapters 7 and 10.
1. Previous exam topics
2. Write simple functions with parameters and/or a return value.

3. Conversion each way between Pip machine code and assembler. (Include in your 4 pages anything you do not want to remember!)

4. Play computer on any Pip assembler code

5. Write short computational sequences, if-else logic

6. Understand how millions of circuit elements can be created simultaneously

7. Be able to convert any way between Boolean expressions, sequential logic circuits, and truth tables.
8. Understand adders, multiplexers

9. Be able to explain and take a position on larger social issues: the implications of increasing power of computers, issues of our reliance on computers, the increased access to electronic information, issues of privacy and accountability, how the existence of computer crime affects our choices....
Exam emphases
1. Individual topics that are new since the last exam will be more emphasized than the topics you have been examined on before, probably meaning 35-45% of the exam will be on new topics.

2. Problems from later in the semester generally include skills needed from early in the semester implicitly, so most questions will not be straight from the early part of the course, though there may be some topics from earlier in the semester that did not get used much in the later part of the course..

3. The best characterization of the course is the course itself, but I have tried to give you homework or class discussion on all the important ideas, so reviewing homework and class discussions is a good review. Looking at old exams or sample exams is a quick but not complete way to review the older material: we have covered much more in all the homework than there was space for in exams or even sample exams. Obviously if you missed something on an exam, it would be good to make sure you know it now, but exams involve a number of arbitrary choices and omissions, and different choices are likely to be made on the final. Major topics are likely to reappear, but often be treated from a somewhat different angle than last time, or combined in different ways. A mostly different collection of secondary topics is likely to be on the final.

4. I repeat: the best review of what you need to be able to do is the homework. If you need further exercises on any subject, let me know.
Read the following before looking at either the problems or the solutions! (Same as exam 1)
1. Study first and then look at the sample problems. The sample problems cannot give complete coverage, and if you look at them first, you are likely to study just these points first, and will not get an idea how well you are prepared in general. Look at the list at the top of the page and start by filling in any holes.

2. Do not look at the answers until you have fully studied and tried the problems and gotten help getting over rough spots in the problems if you need it! Looking at the answers before this time makes the problems be just a few more displayed examples, rather than an opportunity to actively learn by doing and check out where you are. The doing is likely to help you be able to do again on a test.
New sample problems start on the next page.

Review Problems for the Final Exam (Solutions follow the problems.)
1. Write a sequence of PIP Assembler or machine code instructions that will copy the value of memory location 130 into memory location 131. (You do not need to write a whole program -- no Halt required.)
2. Convert the PIP machine code to assembler
00010100 00000111
00000101 10000000
00001111 00000000
3. Convert the PIP Assembler to Machine code
LOD 129
MUL #3
HLT
4. Play computer with the program below, completing the log at the right, showing the machine state after each instruction (including the new IP address). To save time, you may choose to show only those values that change at each line. The initial values are shown.
Address
Assembler code

0

LOD #5

2

STO X

4

LOD #3

6

STO Y

8

JMZ 24

10

SUB #1

12 STO Y

14
MUL #2

16
ADD X

18
STO X
20

LOD Y

22
JMP 8

24

HLT

IP ACCUM X Y

 0 0 0 0
5. Convert the following code to Pip Assembler.
if X == Z:
 Y = 3

else:

 X = Y
Z = X + Y

6. Draw a circuit diagram that corresponds to the following Boolean expression: A(B + (CA)')
A

B

C

7.
Complete the truth table below.
	A
	B
	A'
	A' B
	A+B
	A' B + (A+B)

	0
	0
	
	
	
	

	0
	1
	
	
	
	

	1
	0
	
	
	
	

	1
	1
	
	
	
	

8. Write a Boolean expression involving A, B, and C that corresponds to the following circuit:

[image: image1.png]

9. Given the truth table below, write a Boolean expression in terms of A, B, and C for X.
	A
	B
	C
	X

	0
	0
	0
	1

	0
	0
	1
	0

	0
	1
	0
	0

	0
	1
	1
	1

	1
	0
	0
	0

	1
	0
	1
	0

	1
	1
	0
	0

	1
	1
	1
	1

10. Complete the truth table if X is true whenever B is different from both A and C.
	A
	B
	C
	X

	0
	0
	0
	

	0
	0
	1
	

	0
	1
	0
	

	0
	1
	1
	

	1
	0
	0
	

	1
	0
	1
	

	1
	1
	0
	

	1
	1
	1
	

11. There were electronic computers before there were transistors. What components in the earliest electronic computers were later replaced by transistors?
12. There was an early prediction that there would never be a demand for more than 10 computers in the world. In what way was that a believable prediction?
13. If someone says they wrote and ran a program on a very advanced computer showing world population would triple in the next 10 years, what would you have to say? (Spend most of you time relating to the ideas in the book.)

14. What is printed? Be careful to follow the order of execution, not the order of the text!

def foo(x): #1
 return x*2 #2

def bar(a, n): #3
 print foo(n+1) #4
 print foo(a) #5

print 'go' #6
bar('now', 4) #7

15. Do the following base conversions. Show your work.
a. Convert the decimal number 54 into binary.

b. Convert the binary number 111100110110010010 into hexadecimal, without converting the entire base 2
representation to base 10 first
16. What is printed? Hint: The list nums is modified while it is being referred to as newVals in foobar.

def foobar(oldVals, newVals): #1
 for i in oldVals: #2
 newVals.append(i+1) #3

nums = [] #4
foobar([1, 3, 8], nums) #5
print nums #6

17. What is printed?

def f(x):
 return 2*x
print f(3), f(f(3))

18. Convert the octal numeral 771 to binary, and then to hexadecimal.

19. What is printed?

x = 16 #1

while x > 2: #2

 x = x/2 #3

 if x > 3 and x < 7: #4

 print 3*x #5

 else

 print x #6

20. What is printed? Be careful of the order of completion of the nested loops!
for s in ['abc', 'de', 'f']: #1
 for ch in s: #2
 print ch*2, #3
 print #4
21. Write a function upper2 that takes a single string as parameter and prints the string twice on a line in upper case.

def upper2(s):

22. Write a function that takes a single string as parameter and returns the string repeated twice.

def upper2ret(s):

23. Redefine the function upper2 so it uses the function upper2ret.

def upper2(s):

24. Write a function lineCount that takes the name of a file as parameter, reads and closes the file, and returns the number of lines in the file.
def lineCount(filename):

25. Write a function printListUpper that has a parameter words, which is a list of strings, and prints each in upper case on the same line. If names were ['hi', 'there'] then the following would be printed:
 HI THERE

def printListUpper(words):

26. Write a function printListShortUpper that has a parameter which is a list of strings, and prints each string that is shorter than the numeric parameter n in upper case on the same line. If words were ['hi', 'there'] and n were 4, then the following would be printed:
 HI

def printListShortUpper(words, n):

27. Write a function newtListUpper that has a parameter which is a list of strings and creates and returns a new list containing each string in upper case. If words were ['hi', 'there'] then ['HI', 'THERE'] would be returned.

def newListUpper(words):

Answers on the next page
Final Exam Review Problem Answers

1. LOD 130

 STO 131

2. LOD #7 ; pound sign from 0001; LOD code 0100; 7 from binary 00000111

 STO 128 ; STO code 0101; 128 in binary 10000000
 HLT ; HLT code is 1111

3. 00000100 10000001

 00010010 00000011
 00001111 00000000

4. IP ACCUM X Y

 0 0 0 0

 2 5 0 0

 4 5 5 0

 6 3 5 0

 8 3 5 3

 10 3 5 3

 12 2 5 3

 14 2 5 2

 16 4 5 2

 18 9 5 2

 20 9 9 2

 22 2 9 2

 8 2 9 2

 10 2 9 2

 12 1 9 2

 14 1 9 1

 16 2 9 1

 18 11 9 1

 20 11 11 1

 22 1 11 1

 8 1 11 1

 10 1 11 1

 12 0 11 1

 14 0 11 0

 16 0 11 0

 18 11 11 0

 20 11 11 0

 22 0 11 0

 8 0 11 0

 24 0 11 0

 --
By the way, this roughly corresponds to the Python

X = 5

Y = 3

while Y != 0:

 Y = Y - 1

 X = X + 2*Y
so X ends up as 5 + 2*2 + 1*2 + 0*2 = 11
5. LOD X ; same as if x-z == 0 ; or jump if not x-z ==0

 SUB Z

 NOT

 JMZ ELSE
 LOD #3
 STO Y

 JMP PAST

ELSE: LOD Y
 STO X

PAST: LOD X

 ADD Y

 STO Z

6. (Could use NAND instead of AND and NOT)

[image: image2.png]ABCA))

(CAY

7.
	A
	B
	A'
	A' B
	A+B
	A' B + (A+B)

	0
	0
	1
	0
	0
	0

	0
	1
	1
	1
	1
	0

	1
	0
	0
	0
	1
	1

	1
	1
	0
	0
	1
	1

8. A’(B + C)

9. A'B'C' + A'BC + ABC

10.
	A
	B
	C
	X

	0
	0
	0
	0

	0
	0
	1
	0

	0
	1
	0
	1

	0
	1
	1
	0

	1
	0
	0
	0

	1
	0
	1
	1

	1
	1
	0
	0

	1
	1
	1
	0

11. Vacuum tubes.

12. Given the technology of the time with room sized computer calculating relatively slowly, costing a massive amount to run and with vacuum tubes failing frequently, it was not a bad guess. (They could not imagine computers as fast and as small and as cheap and reliable as today -- which dramatically changed what things are done on computers.)

13. (Particularly since this is way faster growth than others are saying:) The fancy computer is not what needs to impress me: what data are you using and what are your assumptions?

14. go

 10

 nownow
line comment
6 print go (earlier lines only definitions)

7 Call bar

3 a is 'now' and n is 4

4 n+1 is 4+1 is 5; call foo(5)

1 x is 5

2 return 2*5 is 10

4 print returned 10

5 call foo

1 x is 'now'

2 return 'now'*2 is 'nownow'

5 print returned nownow

15a. 110110: 54/2 = 27 R 0, 27/2 = 13 R 1, 13/2 = 6 R 1, 6/2 = 3 R 0, 3/2 = 1 R 1, 1/2 = 0 R 1
remainders backwards: 110110

b. 3CD92
11 1100 1101 1001 0010 group from the right!

 3 C D 9 2

16. [2, 4, 9] Execution starts at line 4 -- after the definitions
step by step – does not show the spaces and newlines, not a complete substitute for the final answer!

Line nums i comment

4 []
5 call foobar
1 oldVals is [1, 3, 8] and newVals is an alias for nums
2 1 i is first element of oldVals
3 [2] i+1 is 1+1 is 2, append to newVals (nums)
2 3 i is next element of oldVals

3 [2, 4] i+1 is 3+1 is 4, append to newVals (nums)

2 8 i is next amd last element of oldVals

3 [2, 4, 9] i+1 is 8+1 is 9, append to newVals (nums)

2 - done with sequence and done with loop

6 print [2, 4, 9]
17. 6, 12 # f(3) is 2*3 = 6; f(f(3)) is f(6) = 2*6=12
18. 111111001, 1F9

 7 7 1

111 111 001 is 111111001,
now split in 4's

1 1111 1001

1 F 9

19.

8
12
2
line x comment

1 16
2 16 >2 is True
3 8 16/2 is 8
4 8>3 and 8 < 7 is true and false is false
6 print 8
2 8 >2 is True

3 4 8/2 is 4

4 4>3 and 4 < 7 is true and true is true

5 4*3 is 12 -- printed

2 4 >2 is True

3 2 4/2 is 2

4 2>3 and 2 < 7 is false and true is false

6 print 2

2 2>2 false: skip loop

20. aa bb cc

 dd ee

 ff

line s ch comment

1 abc first in list

2 a first in character sequence 'abc'
3 print aa (but stay on same line)
2 b next in character sequence 'abc'

3 print bb (but stay on same line)

2 c last in character sequence 'abc'

3 print cc (but stay on same line)

2 - done with character sequence 'abc'
4 on to new line

1 de next in list

2 d first in character sequence 'de'

3 print dd (but stay on same line)

2 e next and last in character sequence 'abc'

3 print ee (but stay on same line)

2 - done with character sequence 'de'

4 on to new line

1 f next in list

2 f first in character sequence 'f'

3 print ff (but stay on same line)

2 - done with character sequence 'f'

4 on to new line

1 done with list

21. def upper2(s):

 print s.upper()*2

22. def upper2ret(s):

 return s.upper()*2

23. def upper2(s):

 print upper2ret(s)

24.
def lineCount(filename):

 file = open(filename)

 lines = file.readlines()

 file.close()

 return len(lines)
#OR

def lineCount(filename):

 file = open(filename)

 n = 0

 for line in file:

 n = n+1

 file.close()

 return n

25. def printListUpper(words):

 for s in words:

 print s.upper(),

26. def printListShortUpper(words, n):

 for s in words:

 if len(s) < n:

 print s.upper(),

27. def newListUpper(words):

up = []

 for s in words:

 up.append(s.upper())

 return up
_1131249387

