
Comp 150 Final Exam Overview.

Resources During the Exam
You may use notes on four sides of 8.5x11 inch paper (either both sides of two sheets, or four sheets written on
single sides). Write this as you study! I mostly want to test you on concepts, not memorized rote facts.
Opcode table supplied showing both Assembler mnemonics and binary opcodes.

Main topics that may be on the final exam: Previous exam topics on Python + a bit on client/server
programming, web notes on binary arithmetic, Pip assembler, gates/circuits/truth tables, and SQL.

1. Previous exam topics on Python
2. Formatting with local variables: format parameter **locals()
3. Limited topics from cgi scripting: no HTML, but I could show you the output of my dumpcgi.cgi script

from some web page form, as an indication of what is produced by a form, and show you an alternate
cgi script to receive the information, and ask you what the script prints.

4. Converting between binary and decimal (both directions!) converting between binary and hexadecimal
(the easy way, both directions)

5. Read/write Pip assembler and play computer, using all instructions except AND and CPZ. Understand
the use of the accumulator and symbolic variables and labels for jumps. Follow and be able to write
short computational sequences and if-else or while-loop logic with Pip assembler code

6. Be able to convert individual instructions between assembler and machine language (both ways). I will
post a table of op code to assembler mnemonic conversions, like 0010 MUL, so you do not have to put that
in your notes. (and still be able to play computer on Pip assembler code).
7. Understand how millions of circuit elements can be created simultaneously in chip fabrication.
8. Be able to convert any way between Boolean expressions, sequential logic circuits, and truth tables.
9. Understand circuits for adders and multiplexers
10. SQL SELECT, WHERE with =, inequalities, LIKE '...%..., IN, AND (not join – only one table at a time)

Exam emphases
1. Individual topics that are new since the last exam will be more emphasized than the topics you have
been examined on before, probably meaning 45-55% of the exam will be on new topics.
2. Problems from later in the semester generally include skills needed from early in the semester implicitly,
so most questions will not be straight from the early part of the course, though there may be some topics
from earlier in the semester that did not get used much in the later part of the course.
3. The best characterization of the course is the course itself, but I have tried to give you tutorial work or
homework on all topics, so reviewing your work is a good review. Looking at old exams or sample exams
is a quick but not complete way to review the older material: You should have covered much more in all
your work than there was space for in exams or even sample exams. Obviously if you missed something on
an exam, it would be good to make sure you know it now, but exams involve a number of arbitrary choices
and omissions, and different choices are likely to be made on the final. Major topics are likely to reappear,
but often be treated from a somewhat different angle than last time, or combined in different ways. A
mostly different collection of secondary topics is likely to be on the final.
4. I repeat: the best review of what you need to be able to do is to go over what you have worked on. If
you need further exercises on any subject, let me know.

Same Instructions for studying and using th esample problems as on the last two exams
Study first and then look at the sample problems.... See earlier review pages for the rest of those instructions.

New sample problems start on the next page.

Review Problems for the Final Exam (Solutions follow the problems.)

1. Write a sequence of PIP Assembler or machine code instructions that will copy the value of memory location 130 into
memory location 131. (You do not need to write a whole program -- no HLT required.)

2. Convert the PIP machine code to assembler
00010100 00000111
00000101 10000000
00001111 00000000

3. Convert the PIP Assembler to Machine code
LOD 129
MUL #3
HLT

Assem Opcode
ADD 0000
AND 1000
CPL 1011
DIV 0011
HLT 1111
JMP 1100
JMZ 1101

Assem Opcode
LOD 0100
MUL 0010
NOP 1110
NOT 1001
STO 0101
SUB 0001

4. Play computer with the silly program below, completing
the log at the right, showing the machine state after each
instruction. To save time, you may choose to show only
those values that change at each line. To be consistent with
the simulator display, I show columns for both the current
and next IP addresses, but you only need to fill in the
current IP address (left column) of the instruction just
executed. The initial values are shown.

Address Assembler code
0 LOD #-5
2 STO X
4 MUL #-1
8 STO Y
8 CPL X
10 JMZ L1
12 LOD X
14 ADD Y
16 JMZ L2
18 L1: LOD X
20 L2: ADD X
22 JMP L3
24 SUB #1
26 L3: HLT

IP--> ACCUM X Y

-- 0 0 0 0
 0 2 -5 0 0

5. Convert the following code to Pip Assembler.
if X == Z:
 Y = 3
else:
 X = Y
Z = X + Y

6. Draw a circuit diagram that corresponds to the following
Boolean expression: A(B + (CA)')

A -

B -

C -

7. Complete the truth table below.

A B A' A'B A+B A'B ⊕ (A+B)

0 0

0 1

1 0

1 1

.

8. Write a Boolean expression involving A, B, and C that corresponds to the following circuit:

9. Given the truth table below, write a Boolean
expression in terms of A, B, and C for X.

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

10. Complete the truth table if X is true whenever
B is different from both A and C

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

11. What is printed? Be careful to follow the order
of execution, not the order of the text!

def foo(x): #1
 return x*2 #2

def bar(a, n): #3
 print(foo(n+1)) #4
 print(foo(a)) #5

print('go') #6
bar('now', 4) #7

12. Do the following base conversions. Show work.
a. Convert the decimal number 54 into binary.
b. Convert the binary number 111100110110010010

into hexadecimal, without converting the entire
base 2 representation to base 10 first.

13. Do the following base conversions. Show work.
a. Convert the hexadecimal 2AF to decimal.
b. Convert the decimal 844 to hexadecimal.

14. Add the following binary numbers. Hint: Work
place by place; add and each 2 makes a carry. Show
work

 101011
+ 100110

15. What is printed? Hint: The list nums is modified
while it is being referred to as newVals in
foobar.

def foobar(oldVals, newVals): #1
 for i in oldVals: #2
 newVals.append(i+1) #3

nums = [6] #4
foobar([1, 3, 8], nums) #5
print(nums) #6

16. What is printed? Hint:

def f(x):
 return 2*x + 1

print(f(1), f(f(1)))

17. What is printed?
x = 16 #1
while x > 2: #2
 x = x/2 #3
 if x > 3 and x < 7: #4
 print(3*x) #5
 else
 print(x) #6

18. What is printed? Be careful of the order of
completion of the nested loops!

for s in ['abc', 'de', 'f']: #1
 for ch in s: #2
 print(ch*2, end=' ') #3
 print() #4

19. Write a function upper2 that takes a single
string s as parameter and prints the string twice
on a line in upper case.
def upper2(s):

20. Write a function that takes a single string s as
parameter and returns the string repeated twice
in upper case.
def upper2ret(s):

21. Redefine the function upper2 so it uses the
function upper2ret.
def upper2(s):

22. Write a function printListUpper that has a
parameter words, which is a list of strings, and
prints each in upper case on the same line. If
names were ['hi', 'there'] then the following
would be printed:
 HI THERE

def printListUpper(words):

23. Write a function printListShortUpper
that has a parameter words, which is a list of
strings, and prints each string that is shorter than
the numeric parameter n in upper case on the
same line. If words were ['hi', 'there'] and n
were 4, then the following would be printed:
 HI

def printListShortUpper(words, n):

24. Write a function newListUpper that has a
parameter words, which is a list of strings, and
creates and returns a new list containing each
string in upper case. If words were ['hi', 'there']
then ['HI', 'THERE'] would be returned.

def newListUpper(words):

25. The start of a database table is shown. Write SQL queries:

Classes

name section prof time credits

Comp 150 1 Harrington TTh 10AM 3

Comp 170 1 Akhtar TTh 1PM 3

Comp 363 1 Harrington Th 4:15PM 3

 a. Find the name and time for all classes with prof "Harrington"
 b. Find the name, prof, and time of all classes for more than 3 credits.

Answers on the next page

Final Exam Review Problem Answers
1. LOD 130
 STO 131

2. LOD #7 ; pound sign from 0001; LOD code 0100; 7 from binary 00000111
 STO 128 ; STO code 0101; 128 in binary 10000000
 HLT ; HLT code is 1111

3. 00000100 10000001
 00010010 00000011
 00001111 00000000

4.
IP--> ACCUM X Y

-- 0 0 0 0
 0 2 -5 0 0 LOD #-5;acc=-5
 2 4 -5 -5 0 STO X ;X=acc=-5
 4 6 5 -5 0 MUL #-1 ;acc=-5*-1=5
 6 8 5 -5 5 STO Y ;Y=acc=5
 8 10 1 -5 5 CPL X ;-5<0 true acc=1
10 12 1 -5 5 JMZ L1; acc!=0;no jump
12 14 -5 -5 5 LOD X ; acc=X=-5
14 16 0 -5 5 ADD Y ;acc=acc+Y=-5+5=0
16 20 0 -5 5 JMZ L2 ;acc is 0; jump
20 22 -5 -5 5 ADD X ; acc=acc+X=0+-5
22 26 -5 -5 5 JMP L3 must jump
26 -- -5 -5 5 HLT

5. LOD X
 SUB Z ; same as if x-z == 0
 NOT ; same as if not x-z == 0
 JMZ ELSE
 LOD #3
 STO Y
 JMP PAST
ELSE: LOD Y
 STO X
PAST: LOD X
 ADD Y
 STO Z

6. (Could use NAND instead of AND and NOT)

7.
A B A' A'B A+B A'B ⊕ (A+B)

0 0 1 0 0 0

0 1 1 1 1 0

1 0 0 0 1 1

1 1 0 0 1 1

8. A’(B ⊕ C)
9. A'B'C' + A'BC + ABC
10.

A B C X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

11. go
 10
 nownow

line comment
6 print go (earlier lines only definitions)
7 Call bar
3 a is 'now' and n is 4
4 n+1 is 4+1 is 5; call foo(5)
1 x is 5
2 return 2*5 is 10
4 print returned 10
5 call foo
1 x is 'now'
2 return 'now'*2 is 'nownow'
5 print returned nownow

12a. 110110: 54/2 = 27 R 0, 27/2 = 13 R 1, 13/2 = 6 R 1, 6/2 = 3 R 0, 3/2 = 1 R 1, 1/2 = 0 R 1
remainders backwards: 110110
b. 3CD92 11 1100 1101 1001 0010 group from the right!

 3 C D 9 2

13a 2*162 + 10*16 + 15 = 512 + 160 + 15 = 687
 b. 844/16 = 52 R 12; 52/16 = 3 R 4; 3/16 = 0 R 3 Read remainders from right: 3 4 12; convert to
hexadecimal digits: 34C. (If you do not like arithmetic with 16's, you could do binary conversions in the
middle: part a: convert to binary, then decimal. Part b: convert to binary; then hexadecimal.)

14. 1 111 carries
 101011
+ 100110
 1010001

15. [6, 2, 4, 9]
step by step
Line nums i comment
4 [6] execution starts at line 4 -- after the definitions
5 call foobar
1 oldVals is [1, 3, 8] and newVals is an alias for nums
2 1 i is first element of oldVals
3 [6, 2] i+1 is 1+1 is 2, append to newVals (nums)
2 3 i is next element of oldVals
3 [6, 2, 4] i+1 is 3+1 is 4, append to newVals (nums)
2 8 i is next amd last element of oldVals
3 [6, 2, 4, 9] i+1 is 8+1 is 9, append to newVals (nums)
2 - done with sequence and done with loop
6 print [6, 2, 4, 9] (with square braces and commas)

16. 3 7 # f(1) is 2*1+1 = 3; f(f(1)) is f(3) = 2*3+1=7

17. 8
12
2

line x comment
1 16
2 16 >2 is True
3 8 16/2 is 8
4 8>3 and 8 < 7 is true and false is false
6 print 8
2 8 >2 is True
3 4 8/2 is 4
4 4>3 and 4 < 7 is true and true is true
5 4*3 is 12 -- printed
2 4 >2 is True
3 2 4/2 is 2
4 2>3 and 2 < 7 is false and true is false
6 print 2
2 2>2 false: skip loop

18. aa bb cc
 dd ee
 ff
line s ch comment
1 abc first in list
2 a first in character sequence 'abc'
3 print aa (but stay on same line)
2 b next in character sequence 'abc'
3 print bb (but stay on same line)
2 c last in character sequence 'abc'
3 print cc (but stay on same line)
2 - done with character sequence 'abc'
4 on to new line, done with inner loop
1 de next in list for outer loop
2 d first in character sequence 'de'
3 print dd (but stay on same line)
2 e next and last in character sequence 'abc'
3 print ee (but stay on same line)
2 - done with character sequence 'de'
4 on to new line, done with inner loop
1 f next in list for outer loop
2 f first in character sequence 'f'
3 print ff (but stay on same line)
2 - done with character sequence 'f'
4 on to new line, done with inner loop
1 done with list and outer loop

19. def upper2(s):
 print(s.upper()*2)

20. def upper2ret(s):
 return s.upper()*2

21. def upper2(s):
 print(upper2ret(s))

22. def printListUpper(words):
 for s in words:
 print(s.upper(), end=' ')

23. def printListShortUpper(words, n):
 for s in words:
 if len(s) < n:
 print(s.upper(), end=' ')

24. def newListUpper(words):
up = []

 for s in words:
 up.append(s.upper())
 return up

25a SELECT name, time FROM classes
 WHERE prof = "Harrington"
 b. SELECT name, prof, time FROM classes
 WHERE credits > 3

	Comp 150 Final Exam Overview.
	Resources During the Exam
	Same Instructions for studying and using th esample problems as on the last two exams

