Factoring Algorithms
The $p - 1$ Method and Quadratic Sieve

November 17, 2008
Fermat’s factoring method

- Fermat made the observation that if \(n \) has two factors that are near one another (and hence near the square root of \(n \)) then one can find them by searching the sequence \(n + y^2 \) for \(y = 0, 1, 2, 3, \ldots \) until finding a perfect square \(x^2 \).

- Then \(n + y^2 = x^2 \), so

\[
 n = x^2 - y^2 = (x - y)(x + y)
\]

is a factorization of \(n \). If \(n = pq \) is a product of two primes that are near to one another, this finds the factors fairly quickly.
The $p - 1$ method

- Due to Pollard 1974.
- Assume that n has a prime factor p such that all the prime factors of $p - 1$ are fairly small, then we can find a nontrivial factor of n by computing $b \equiv a^{B!} \pmod{n}$ for some chosen B. This computation can be done quickly so long as B is not chosen too large.
- If $p - 1$ has only small prime factors, then for B sufficiently large $p - 1$ will divide $B!$, so $B! = (p - 1)k$ for some integer k. Hence
 \[
 b = a^{B!} = a^{(p-1)k} = (a^{p-1})^k \equiv 1^k \equiv 1 \pmod{p}
 \]
 by Fermat’s Little Theorem, so p is a factor of $b - 1$ and n. Thus, $\gcd(b - 1, n)$ will have p as a factor, so by computing $\gcd(b - 1, n)$ we have found a non-trivial factor of n.
The $p − 1$ method

- The $p − 1$ method works so long as B is *big enough* so that all the prime factors (with their multiplicity) of $p − 1$ occur in $B!$, but *not so big* that computing $b ≡ a^{B!} \pmod{n}$ is prohibitively time consuming.

- Note that it is well known that the sequence $B!$ of factorials is of exponential growth rate, so no matter how fast your computer, there will be some value of B such that the computation will take more than your lifetime to finish.

- To emphasize this last point, let’s record the first few terms of the sequence $n!$ below:

 $1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, \ldots$

 Obviously it is growing pretty fast. In fact, this sequence eventually grows faster than a^n for any given base a.
The $p-1$ method

- MORAL: In choosing p, q for an RSA system, it is important that both p and q are chosen so that each of $p-1$ and $q-1$ has at least one large prime factor. Otherwise, a clever attacker just might get lucky with the $p-1$ method, factor n, and decode the message.

- This is easy to do. Choose a large prime p_0 at random, say with 40 or so decimal digits. Now look in the sequence of numbers of the form $kp_0 + 1$, for $k = 10^{60} + 1, 10^{60} + 2, 10^{60} + 3, \ldots$ until you find some prime p or roughly 100 decimal digits such that $p = kp_0 + 1$. Then $p-1$ has a large prime factor, namely p_0, by construction. Repeat the method to find q.

- It should also be noted that p, q should not be too close together, or else someone might find the factors of n using Fermat’s approach. For this reason, it is important to choose p, q to NOT have exactly the same number of decimal digits.
The Quadratic Sieve

Theorem (Basic Principle)

Let \(n \) be a positive integer. Suppose there exist integers \(x, y \) such that \(x^2 \equiv y^2 \pmod{n} \) but \(x \not\equiv \pm y \pmod{n} \). Then \(\gcd(x - y, n) \) gives a non-trivial factor of \(n \).

Proof.

Set \(d = \gcd(x - y, n) \). Then \(d \) is a divisor of \(n \) so \(1 \leq d \leq n \). If \(d = n \) then \(n \mid (x - y) \) so \(x \equiv y \pmod{n} \), which is contrary to the hypothesis. If \(d = 1 \) then \(n \) does not divide \(x - y \). But \(n \) divides \(x^2 - y^2 = (x - y)(x + y) \) by hypothesis, so \(n \) must therefore divide the second factor \(x + y \), by Euclid’s Lemma. In other words, \(x \equiv -y \pmod{n} \), which is again contrary to hypothesis.

This shows that \(1 < d < n \), so \(d \) is a nontrivial factor of \(n \). That’s what we needed to show.
The Quadratic Sieve

EXAMPLE. Suppose we would like to factor $n = 3837523$. We observe the following:

\[
\begin{align*}
9398^2 & \equiv 5^5 \cdot 19 \\
19095^2 & \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \\
1964^2 & \equiv 3^2 \cdot 13^3 \\
17078^2 & \equiv 2^6 \cdot 3^2 \cdot 11
\end{align*}
\]

where all the congruences are mod n. By multiplying these together, we obtain the congruence

\[
(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2
\]

which simplifies mod n to give

\[
2230387^2 \equiv 2586705^2 \pmod{3837523}.
\]
EXAMPLE, CONTINUED.

In this case, \(2230387 \not\equiv \pm 2586705 \pmod{3837523}\) so by computing \(\gcd(2230387 - 2586705, 3837523) = 1093\) we find a factor 1093 of \(n\). Then the other factor is \(n/1093 = 3511\), so \(n = 1093 \cdot 3511\).
The Quadratic Sieve

- The idea is to find several relations of the form

\[x_i^2 \equiv \text{a product of small primes} \pmod{n}. \]

If you get enough relations of that form, then some of them can be combined to give a congruence \(x^2 \equiv y^2 \pmod{n} \).

- Sometimes you are unlucky, and \(x \equiv \pm y \pmod{n} \). If that happens, look for more relations of the indicated type and try again. Eventually, if you happen upon a case where \(x^2 \equiv y^2 \pmod{n} \) but \(x \not\equiv \pm y \pmod{n} \) then you have factored \(n \).

- This is how the RSA challenge (Scientific American 1977) was finally cracked in 1994, using a factor base of more than half a million primes and 1600 computers in parallel. The project took 7 months to complete.
The Quadratic Sieve

How does one find numbers x_i such that

$$x_i^2 \equiv \text{a product of small primes (mod } n)$$

(The set of desirable small primes is called the factor base.)

Examine numbers of the form $\left[\sqrt{kn} + j\right]$ where j is fairly small. Here $[r]$ means the integer part of a real number r. The square of such a number x_i will be likely to have only small factors mod n, since its residue mod n is fairly small relative to the size of n.

EXAMPLE. For $n = 3837523$ as before, we get $8077 = \left[\sqrt{17n} + 1\right]$ and $9398 = \left[\sqrt{23n} + 1\right]$.
The Quadratic Sieve

- Let \(\{p_1, p_2, \ldots, p_t\} \) be a chosen factor base. Find numbers \(x_i \) such that \(x_i^2 \) is congruent to a product of primes from the factor base. So we can write

\[
x_i^2 \equiv p_1^{e_{i1}} p_2^{e_{i2}} \cdots p_t^{e_{it}} \pmod{n}
\]

for each \(i \). Here the exponents \(e_{ij} \) are non-negative integers. (Some of them might be zero.)

- The exponents \(e_{ij} \) produced above give a matrix with \(t \) columns. We want to find rows in that matrix such that the sum of the rows gives a row vector whose entries are all even, since then the product of the corresponding \(x_i^2 \) will be congruent to the square of a product of primes in the factor base.
The Quadratic Sieve

- **EXAMPLE.** One can find such a matrix for \(n = 3837523 \) by repeatedly examining numbers of the form \(x_i = \lfloor \sqrt{kn} + j \rfloor \) and factoring these numbers.

- This gives a matrix of the form

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>9398^2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19095^2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1964^2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17078^2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8077^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3397^2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14262^2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>