CS 363 Outline for Quiz 2

Use appendix A and exponent formulas.

Algorithm analysis
 Worst case analysis
 Average case analysis in simple, equally likely situations
 Idea of lower bounds applying to all algorithms in a class
 Lower bounds via decision trees

Growth order of functions:
 sequence of orders for common functions
 simplifying order expressions
 big and small Oh, theta, and omega

Recurrence relations:
 Master theorem! Be able to classify recurrence relations and use it!
 Creating recurrence relations $T(n) = f(n) + \text{terms involving } T$
 Distinguish non-recursive term $f(n)$ from recursive terms and from $T(n)$!
 Formulas for $T(n)$ as sum if $T(n) = T(n-1) + f(n)$

Emphasis from here on, using earlier basics:

Searching
 linear, binary

Sorting. For all: follow algorithm for small data sets, stable sorts
 Insertion sort algorithm, worst, best, average cases
 Selection Sort
 Quicksort,
 initial partition algorithm,
 stack issues, version with loop
 worst case, best case, order of average case
 MergeSort
 Analysis for $n =$ power of 2
 Lower bound for key comparison based search via decision tree
 Heapsort
 Best, worst case behavior
 Radix sort
 Order analysis
 Comparisons of all sorts (where each has advantages)

Idea of amortizing
 Array copying for stacks as example of amortizing