CS 363 Outline for Midterm Exam
May refer to Appendix A + 3 sides of notes

Algorithm analysis
 Worst case analysis
 Average case analysis in simple, equally likely situations
 Idea of lower bounds applying to all algorithms in a class
 Lower bounds via decision trees

Growth order of functions:
 sequence of orders for common functions
 simplifying order expressions
 big and small Oh, theta, and omega

searching
 linear, binary

Recurrence relations:
 Master theorem! Be able to classify recurrence relations and use it!
 Creating recurrence relations \(T(n) = f(n) + \text{terms involving } T \)
 Distinguish non-recursive term \(f(n) \) from recursive terms and from \(T(n)! \)
 Formulas for \(T(n) \) as sum if \(T(n) = T(n-1) + f(n) \)

Strassen’s algorithm as example

Sorting. For all: follow algorithm for small data sets, stable sort?
 Insertion sort algorithm, worst, best, average cases
 Selection Sort
 Quicksort,
 initial partition algorithm,
 stack issues, version with loop
 worst case, best case, order of average case
 MergeSort
 Analysis for \(n = \text{power of 2} \)
 Lower bound for key comparison based search via decision tree
 Heapsort
 Best, worst case behavior

Radix sort
 Order analysis

Counting Sort
 Order analysis

Comparisons of all sorts (where each has advantages)

Heaps: creating, adding element, removing element, array mapping vs tree representation.

Idea of amortizing
 Array copying for stack as example of amortizing

B-trees
 Algorithms for search, insert, delete – apply to specific cases
 Order of algorithms
 Relation to red-black trees – either direction

Hash tables - algorithms for chained and open (linear and double);
 memory usage; average, worst case behavior